中文
Profile
VIEW MORE
      李茜,男,湖北孝感人,1996年8月生,工学博士,博士毕业于中国石油勘探开发研究院矿产普查与勘探专业,硕士导师朱光有教授、博士导师沈安江教授,主要研究方向为同位素地球化学和石油地质学,发表论文35篇,参与中国石油集团重大项目2项,国家重点基金2项,荣获“北京市优秀毕业生”,“王涛英才博士奖学金”,“孙越崎优秀学生奖金”,“绿色矿山科学技术奖一等奖”,“全国发明展览会发明创新奖金奖”,“第18届北京市...
李茜
Paper Publications
Paleo-marine redox environment fluctuation during the early Cambrian: Insight from iron isotope in the Tarim Basin, China
Release time:2023-12-22 Hits:
Journal:
Science of The Total Environment
Key Words:
Early Cambrian; Iron isotope; Paleo-redox environment; Tarim basin.
Abstract:
The Ediacaran to Cambrian period is generally considered to be the vital transition in the history of marine redox environment and life evolution on earth. The ocean oxygenation levels during this transition period are still debated. Since iron is widely involved in biogeochemical cycles and undergoes redox cycling both in the seawater and sediments, it has become a significant proxy to reconstruct paleo-marine environment. In order to constrain the paleo-marine redox state in the early Cambrian, the iron isotope composition of bulk rock (δ56FeT) is interpreted combining with iron-speciation, redox sensitive elements and pyrite sulfur isotope (δ34Spy) of Yuertusi Formation in Tarim Block. The δ56FeT values varies from −0.39 ‰ to 0.48 ‰, with an average of 0.07 ‰, mainly controlled by pyrite mineral facies in this study. Based on the mechanism of pyrite generation in different redox condition, it is proposed that the marine environment of the lower Cambrian in the Tarim basin is dominated by anoxic with intermittent euxinic state. The dynamic evolution of redox environment can be divided into three intervals. The gradual decrease of δ56Fe in Interval I indicates the paleo-marine environment changed from anoxic ferruginous to euxinic, and the paleo-marine sulfate reservoir decreased to a limited level, which might be attributed to abundant burial of organic matter and pyrite. For Interval II, δ56Fe values first increase to evident positive because of partial oxidization then decreased to that of seawater (about 0 ‰) due to complete oxidization. In Interval III, the continuous decrease of δ56Fe values infers a sustaining oxidization. In summary, the paleo-marine environment of the lower Cambrian Yuertusi Formation evolved from anoxic ferruginous to euxinic and then oxidized continuous. Iron isotope statistics from geological historical periods indicate that seawater was relatively oxidized after the NOE event but did not reach the oxidation levels of present-day seawater.
Volume:
912
Page Number:
169277
ISSN No.:
0048-9697
Included Journals:
SCI

Pre One:Evolution of the Cryogenian cratonic basins in China, paleo-oceanic environment and hydrocarbon generation mechanism of ancient source rocks, and exploration potential in 10,000 m-deep strata

Next One:Resistance of eogenetic dolomites to geochemical resetting during diagenetic alteration: A case study of the lower Qiulitage Formation of the Late Cambrian, Tarim Basin