电子邮箱:
所在单位:园艺园林学院
学历:博士研究生毕业
学位:博士
职称:教授
毕业院校:华中农业大学
所属院系:园艺园林学院
学科: 果树学
招生学科: 果树学 风景园林学,
博士,教授(专技二级),博士生导师,爱思唯尔2020、2021、2022、2023中国高被引学者,全球顶尖前10万科学家(全球学者库发布),世界排名前2%科学家 (斯坦福大学联合Elsevier发布),湖北省新世纪高层次人才,湖北省高等学校优秀中青年科技创新团队“柑橘菌根生理和相关功能研究”负责人,湖北高校省级教学团队“园艺专业系列课程教学团队”负责人,湖北省自然科学基金杰青,湖北省优秀共产党员,荆州市十大杰出青年,长江大学杰出人才等。
主要从事果树与菌根真菌的互作研究,包括菌根增强果树抗逆性和改善根系形态的机制、菌根菌丝网络的信号传导、球囊霉素相关土壤蛋白的功能及其制剂的研发和应用等,建立了菌根真菌繁殖体系,并向全国科研单位提供各类菌种。主持国家重点研发计划、国家自然科学基金面上项目、青年基金、教育部重点项目、湖北省科技厅、教育厅、农业农村厅等项目20余项。以第一作者或通讯作者发表近200篇SCI收录论文;出版学术著作7部,授权国家发明专利6项。获湖北省高等学校教学成果奖二等奖(排名第1和第8)、吉林省自然科学二等奖(排名第2)、贵州省科学技术进步三等奖(排名第2)、湖北省科技进步二等奖(排名第9)。担任8个SCI杂志如《Chemical and Biological Technologies in Agriculture》、《BMC Plant Biology》等副主编或编委以及NSFC、博士后基金、智利国家基金、爱尔兰国家基金、海南省重点研发项目等项目以及山东省、河北省科技奖励评审专家
主要讲授园艺植物营养诊断、植物生理学等。2001年,江西农业大学园艺专业本科毕业;2006,华中农业大学园艺林学学院果树专业学习,获博士学位;2011.12,长江大学园艺园林学院教授;2014.12博士生导师。
[1] Wu QS. Arbuscular mycorrhizas and stress tolerance of plants. Springer Nature Singapore Pte Ltd., 2017, p. 1-327
[2] Wu QS, Zhang DJ. Plant Growth Regulators (PGR): Types, Uses and Safety. NOVA Science Publishers, New York, 2020, pp. 1-150.
[3] Wu QS, Zou YN, Zhang F, Shu B. An Introduction to Microorganisms. NOVA Science Publishers, New York , 2021, pp. 1-281.
[4] Wu QS, Zou YN. Mycorrhizal Fungal Application in Citrus Plants. London,UK, Book Publisher International, 2021, pp. 1-65.
[5] Wu QS, Zou YN, Xu YJ. Endophytic Fungi: Biodiversity, Antimicrobial Activity and Ecological Implications. Nova Science Publishers, Inc., New York, 2022, pp 1-145.
[6] Wu QS, Zou YN, He YJ, Zhou N. New Research on Mycorrhizal Fungus. Nova Science Publishers, Inc., New York, USA, 2023, pp 1-208. ISBN:
[7] Giri B, Kapoor R, Wu QS, Varma. 2022. Structure and Functions of Pedosphere. Springer Nature Singapora Pte Ltd., 427 pages.
[8] Giri B, Prasad R, Wu QS, Varma A. 2019. Biofertilizers for Sustainable Agriculture. Springer Nature Switzerland AG, pp. 1-544
[9] 吴强盛主编. 邹英宁、邹华文副主编. 植物生理学实验指导. 北京:中国农业出版社,2018. 1-171
[10] 吴强盛. 园艺植物丛枝菌根研究与应用. 科学出版社,2010
2021-NLZX-YB60 |
中国学位与研究生教育学会农林学科工作委员会研究课题 |
“新农科背景下地方高校“五结合”式培养园艺研究生创新能力的研究与实践” |
2018292 |
湖北省教育厅高等学校省级教学研究项目 |
园艺专业“六位一体”培养创新能力的研究与实践 |
2012260 |
湖北省教育厅高等学校省级教学研究项目 |
园艺专业“三明治”教育培养模式的研究与实践 |
2009206 |
湖北省教育厅高等学校省级教学研究项目 |
园艺专业优秀创新人才培养途径和方法的探索与实践 |
SCI收录论文(*通讯作者,近3年)
2024
[1] Meng L-L**, Xu F-Q**, Zhang Z-Z, Alqahtani MD, Tashkandi MA, Wu Q-S*. Arbuscular mycorrhizal fungi, especially Rhizophagus intraradices as a biostimulant, improve plant growth and root columbin levels in Tinospora sagittata. Horticulturae. 2023; 9(12):1350. https://doi.org/10.3390/horticulturae9121350
[2] Zhou L-J, Wang Y, Alqahtani MD, Wu Q-S*. Positive changes in fruit quality, leaf antioxidant defense system, and soil fertility of Beni-Madonna tangor citrus (Citrus nanko × C. amakusa) after field AMF lnoculation. Horticulturae. 2023; 9(12):1324. https://doi.org/10.3390/horticulturae9121324
[3] Lei, A. Q.**, Zhou, J. H.**, Rong, Z. Y., Alqahtani, M. D., Gao, X. B., Wu, Q. S.* (2024). Mycorrhiza-triggered changes in leaf food quality and secondary metabolite profile in tea at low temperatures. Rhizosphere, 29: 100840. 10.1016/j.rhisph.2023.100840
[4] Yu HY, He WX, Zou YN, Alqahtani MD, Wu QS*. Arbuscular mycorrhizal fungi and rhizobia accelerate plant growth and N accumulation and contribution to soil total N in white clover by difficultly extractable glomalin-related soil protein. Applied Soil Ecology, 2024, 197:105348. https://doi.org/10.1016/j.apsoil.2024.105348
[5] Liu Z, Cheng XF, Zou YN, Srivastava AK, Alqahtani MD, Wu, QS*. Negotiating soil water deficit in mycorrhizal trifoliate orange plants: a gibberellin pathway. Environmental and Experimental Botany, 2024, 219:105658. Doi: 10.1016/j.envexpbot.2024.105658.
[6] Wan YX, Kapoor R, da Silva FSB, Abd_Allah EF, Kuča K, Hashem A, Wu QS*. Elucidating the mechanism regarding enhanced tolerance in plants to abiotic stress by Serendipita indica. Plant Growth Regul (2024). https://doi.org/10.1007/s10725-024-01124-2
[7] Liu, X.Q., Liu, Z., Zou, Y.N., Alqahtani, M.D., Wu, Q.S.* (2024). Defense responses and symbiotic functional initiation in trifoliate orange‒arbuscular mycorrhizal fungi interaction. Chemical and Biological Technologies in Agriculture, 11(1), 3.
[8] Lü Y**, Wu W-J**, Zhu M-Y, Rong Z-Y, Zhang T-Z, Tan X-P, He Y, Alqahtani MD, Malhotra SK, Srivastava AK, Wu QS*. Comparative response of arbuscular mycorrhizal fungi versus endophytic fungi in tangor citrus: photosynthetic efficiency and P-acquisition traits. Horticulturae, 2024, 10(2):145. https://doi.org/10.3390/horticulturae10020145
[9] Wen Y, Zhou L-J, Xu Y-J, Hashem A, Abd_Allah EF, Wu Q-S*. Growth performance and osmolyte regulation of drought-stressed walnut plants are improved by mycorrhiza. Agriculture, 2024, 14(3):367. https://doi.org/10.3390/agriculture14030367
[10] Falcao EL, Wu QS, da Silva FSB*. Arbuscular mycorrhizal fungi-mediated rhizospheric changes: what is the impact on plant secondary metabolism? Rhizosphere, 2024, 30:100887. https://doi.org/10.1016/j.rhisph.2024.100887
[11] Liu Z, Cao MA, Kuca K, Alqahtani MD, Muthuramalingam P, Wu QS*. Cloning of CAT genes in Satsuma mandarin and their expression characteristics in response to environmental stress and arbuscular mycorrhizal fungi. Plant Cell Reports, 2024, 43:123. Doi:10.1007/s00299-024-03218-7
[12] Wang, D., Wu, W. J., Tian, X., Xiang, N., Hashem, A., Abd_Allah, E. F., Wu QS, & Zou, Y. N. (2024). AMF improves response to waterlogging stress in cucumber. Rhizosphere, 100891. https://doi.org/10.1016/j.rhisph.2024.100891
2023
[13] Li QS, Srivastava AK, Zou YN, Wu QS*. 2023. Field inoculation responses of arbuscular mycorrhizal fungi versus endophytic fungi on sugar metabolism associated changes in fruit quality of Lane late navel orange. Scientia Horticulturae, 308:111587. https://doi.org/10.1016/j.scienta.2022.111587
[14] Cao JL, He WX, Zou YN, Wu QS*. An endophytic fungus, Piriformospora indica, enhances drought tolerance of trifoliate orange by modulating the antioxidant defense system and composition of fatty acids. Tree Physiology, 2023, 43(3):452-466. doi:10.1093/treephys/tpac126.
[15] Wang Y, Zou YN, Shu B, Wu QS*. Deciphering molecular mechanisms regarding enhanced drought tolerance in plants by arbuscular mycorrhizal fungi. Scientia Horticulturae, 2023, 308:111591. https://doi.org/10.1016/j.scienta.2022.111591
[16] Ma W-Y, Qin Q-Y, Zou Y-N, Kuča K, Giri B, Wu Q-S*, Hashem A, Al-Arjani A-BF, Almutairi KF, Abd_Allah EF and Xu Y-J* (2022) Arbuscular mycorrhiza induces low oxidative burst in drought-stressed walnut through activating antioxidant defense systems and heat shock transcription factor expression. Front. Plant Sci. 13:1089420. doi: 10.3389/fpls.2022.1089420
[17] Wang Y, Cao J-L, Hashem A, Abd_Allah EF and Wu Q-S (2023) Serendipita indica mitigates drought-triggered oxidative burst in trifoliate orange by stimulating antioxidant defense systems. Front. Plant Sci. 14:1247342. doi:
[18] Liu Z, Cheng S, Liu X-Q, Kuča K, Hashem A, Al-Arjani A-BF, Almutairi KF, Abd_Allah EF, Wu Q-S and Zou Y-N* (2022) Cloning of a CHS gene of Poncirus trifoliata and its expression in response to soil water deficit and arbuscular mycorrhizal fungi. Front. Plant Sci. 13:1101212. doi: 10.3389/fpls.2022.1101212
[19] Wu Q-S, Silva FSB, Hijri M and Kapoor R (2023) Editorial: Arbuscular mycorrhiza-mediated augmentation of plant secondary metabolite production. Front. Plant Sci. 14:1150900. doi: 10.3389/fpls.2023.1150900
[20] Wang, YJ., He, XH., Meng, LL., Zou, Y.N., Wu, Q.S.* Extraradical mycorrhizal hyphae promote soil carbon sequestration through difficultly extractable glomalin-related soil protein in response to soil water stress. Microbial Ecology, 2023, 86:1023-1034.
[21] Liang SM, Zou YN, Shu B, Wu QS*. Arbuscular mycorrhizal fungi and endophytic fungi differentially modulate polyamines or proline of peach in response to soil flooding. Pedosphere, 2023, May 1, available online, 10.1016/j.pedsph.2023.05.002
[22] Liu RC, Meng LL, Zou YN, He XH, Wu QS*. 2022. Introduction of earthworms into mycorrhizosphere of white clover facilitates N storage in glomalin-related soil protein and contribution to soil total N. Applied Soil Ecology, 179:104597. https://doi.org/10.1016/j.apsoil.2022.104597.
[23] Tian X, Liu XQ, Liu XR, Li QS, Abd_Allah EF, Wu QS*. 2023. Mycorrhizal cucumber with Diversispora versiformis has active heat stress tolerance by up-regulating expression of both CsHsp70s and CsPIPs genes. Scientia Horticulturae, 319:112494.
[24] Liu RC, Yang L, Zou YN*, Wu QS*. Root-associated endophytic fungi modulate endogenous auxin and cytokinin levels to improve plant biomass and root morphology of trifoliate orange. Horticultural Plant Journal, 2023, 9(3):463-472. https://doi.org/10.1016/j.hpj.2022.08.009
[25] Liang S-M, Li Q-S, Liu M-Y, Hashem A, Al-Arjani A-BF, Alenazi MM, Abd_Allah EF, Muthuramalingam P, Wu Q-S*. Mycorrhizal effects on growth and expressions of stress-responsive genes (aquaporins and SOSs) of tomato under salt stress. Journal of Fungi. 2022; 8(12):1305. https://doi.org/10.3390/jof8121305
[26] Liu MY, Li QS**, Ding WY, Dong LW, Deng M, Chen JH, Tian X, Hashem A, Al-Arjani A-BF, Alenazi MM, Abd-Allah, EF, Wu QS*. Arbuscular mycorrhizal fungi inoculation impacts expression of aquaporins and salt overly sensitive genes and enhances tolerance of salt stress in tomato. Chemical and Biological Technologies in Agriculture, 2023, 10:5, 10.1186/s40538-022-00368-2
[27] Liu X-R!, Rong Z-Y!, Tian X, Hashem A, Abd_Allah EF, Zou Y-N*, Wu Q-S*. Mycorrhizal fungal effects on plant growth, osmolytes, and CsHsp70s and CsPIPs expression in leaves of cucumber under a short-term heat stress. Plants. 2023, 12(16):2917. https://doi.org/10.3390/plants12162917
[28] Deng C, Sun R-T, Ma Q, Yang Q-H, Zhou N, Hashem A, Al-Arjani A-BF, Abd_Allah EF, Wu Q-S. Mycorrhizal effects on active components and associated gene expressions in leaves of Polygonum cuspidatum under P stress. Agronomy. 2022; 12(12):2970. https://doi.org/10.3390/agronomy12122970
[29] Liu XQ, Xie MM, Hashem A, Abd-Allah EF, Wu QS*. Arbuscular mycorrhizal fungi and rhizobia synergistically promote root colonization, plant growth, and nitrogen acquisition. Plant Growth Regul,2023,100:691-701. https://doi.org/10.1007/s10725-023-00966-6
[30] Zou Y-N, Xu Y-J, Liu R-C, Huang G-M, Kuča K, Srivastava AK, Hashem A, Abd_Allah EF and Wu Q-S* (2023) Two different strategies of Diversispora spurca-inoculated walnut seedlings to improve leaf P acquisition at low and moderate P levels. Front. Plant Sci. 14:1140467. doi: 10.3389/fpls.2023.1140467
[31] Zou YN, Qin QY, Ma WY, Zhou LJ, Wu QS*, Xu YJ*, Kuca K, Hashem A, Al-Arjani ABF, Almutairi KF, Abd-Allah EF (2023) Metabolomics reveals arbuscular mycorrhizal fungi-mediated tolerance of walnut to soil drought. BMC Plant Biology 23:118. doi: 10.1186/s12870-023-04111-3
[32] Rong Z-Y, Lei A-Q, Wu Q-S*, Srivastava AK, Hashem A, Abd_Allah EF, Kuča K and Yang T* (2023) Serendipita indica promotes P acquisition and growth in tea seedlings under P deficit conditions by increasing cytokinins and indoleacetic acid and phosphate transporter gene expression. Front. Plant Sci. 14:1146182. doi: 10.3389/fpls.2023.1146182
[33] Lei A-Q, Yang Q-H, Zhang Y, Liao W-Y, Xie Y-C, Srivastava AK, Hashem A, Alqahtani MD, Abd_Allah EF, Wu Q-S*, Zhang Y. Agronomic practices alter regulated effects of easily extractable glomalin-related soil protein on fruit quality and soil properties of satsuma mandarin. Agronomy, 2023, 13(3):881. https://doi.org/10.3390/agronomy13030881
[34] Wu W-J, Zou Y-N, Hashem A, Avila-Quezada GD, Abd_Allah EF, Wu Q-S*. Rhizoglomus intraradices is more prominent in improving soil aggregate distribution and stability than in improving plant physiological activities. Agronomy. 2023; 13(5):1427. https://doi.org/10.3390/agronomy13051427
[35] He W-X, Sun Q-F, Hashem A, Abd_Allah EF, Wu Q-S*, Xu Y-J*. Sod culture with Vicia villosa alters the diversity of fungal communities in walnut orchards for sustainability development. Sustainability, 2023, 15(13):10731. https://doi.org/10.3390/su151310731
[36] Deng C, Zou YN, Hashem A, Kuča K, Abd-Allah EF, Wu QS*. The visualized knowledge map and hot topic analysis of glomalin-related soil proteins in the carbon field based on Citespace. Chemical and Biological Technologies in Agriculture 10, 48 (2023). https://doi.org/10.1186/s40538-023-00428-1
[37] Wang, YJ., Wu, QS*. Influence of sugar metabolism on the dialogue between arbuscular mycorrhizal fungi and plants. Horticulture Advances 1, 2 (2023). https://doi.org/10.1007/s44281-023-00001-8
[38] Rong ZY, Zhang ZZ, Alqahtani MD, Wu QS*, Gao XB* (2023) Serendipita indica is a biostimulant that improves tea growth at low P levels by modulating P acquisition and hormone levels. Rhizosphere, 28:100796
[39] Liang, S. M., Hashem, A., Abd-Allah, E. F., & Wu, Q. S.* (2023). Root-associated symbiotic fungi enhance waterlogging tolerance of peach seedlings by increasing flavonoids and activities and gene expression of antioxidant enzymes. Chemical and Biological Technologies in Agriculture, 10(1), 124.
2022
[40] Cheng XF, Xie MM, Li Y, Liu BY, Liu CY, Wu QS*, Kuča K. 2022. Effects of field inoculation with arbuscular mycorrhizal fungi and endophytic fungi on fruit quality and soil properties of Newhall navel orange. Applied Soil Ecology, 170:104308. 10.1016/j.apsoil.2021.104308
[41] Meng LL, Srivastava AK, Kuča K, Wu QS*. 2022. Earthworm (Pheretima guillelmi)-mycorrhizal fungi (Funneliformis mosseae) association mediates rhizosphere responses in white clover. Applied Soil Ecology, 172: 104371. 10.1016/j.apsoil.2021.104371.
[42] Liu XQ, Cheng S, Aroca R, Zou YN, Wu QS*. Arbuscular mycorrhizal fungi induce flavonoid synthesis for mitigating oxidative damage of trifoliate orange under water stress. Environmental and Experimental Botany, 2022, 204:105089. https://doi.org/10.1016/j.envexpbot.2022.105089
[43] Ding YE, Zou YN, Wu QS*, Kuča K*. 2022. Mycorrhizal fungi regulate daily rhythm of circadian clock in trifoliate orange under drought stress. Tree Physiology, 42:616-628. doi: 10.1093/treephys/tpab132.
[44] Sun R-T, Feng X-C, Zhang Z-Z, Zhou N, Feng H-D, Liu Y-M, Hashem A, Al-Arjani A-BF, Abd_Allah EF and Wu Q-S* (2022) Root endophytic fungi regulate changes in sugar and medicinal compositions of Polygonum cuspidatum. Front. Plant Sci. 13:818909. doi: 10.3389/fpls.2022.818909
[45] Sun R-T, Zhang Z-Z, Liu M-Y, Feng X-C, Zhou N, Feng H-D, Hashem A, Abd_Allah EF, Harsonowati W and Wu Q-S* (2022) Arbuscular mycorrhizal fungi and phosphorus supply accelerate main medicinal component production of Polygonum cuspidatum. Front. Microbiol. 13:1006140. doi: 10.3389/fmicb.2022.1006140
[46] Rong Z-Y, Jiang D-J, Cao J-L, Hashem A, Abd_Allah EF, Alsayed MF, Harsonowati W and Wu Q-S* (2022) Endophytic fungus Serendipita indica accelerates ascorbate-glutathione cycle of white clover in response to water stress. Front. Microbiol. 13:967851. doi: 10.3389/fmicb.2022.967851
[47] Cao M-A, Liu R-C, Xiao Z-Y, Hashem A, Abd_Allah EF, Alsayed MF, Harsonowati W, Wu Q-S*. Symbiotic fungi alter the acquisition of phosphorus in Camellia oleifera through regulating root architecture, plant phosphate transporter gene expressions and soil phosphatase activities. Journal of Fungi, 2022, 8(8):800. https://doi.org/10.3390/jof8080800
[48] Li QS, Xie YC, Rahman MM, Hashem A, Abd_Allah EF, Wu QS*. Arbuscular mycorrhizal fungi and endophytic fungi activate leaf antioxidant defense system of lane late navel orange. Journal of Fungi, 2022, 8(3):282. https://doi.org/10.3390/jof8030282
[49] Cheng S, Zou YN, Kuča K, Hashem A, Abd_Allah EF, Wu QS*. 2021. Elucidating the mechanisms underlying enhanced drought tolerance in plants mediated by arbuscular mycorrhizal fungi. Frontiers in Microbiology, 12:809473 doi: 10.3389/fmicb.2021.809473
[50] Sun, R.-T.; Zhang, Z.-Z.; Feng, X.-C.; Zhou, N.; Feng, H.-D.; Liu, Y.-M.; Harsonowati, W.; Hashem, A.; Abd_Allah, E.F.; Wu, Q.-S*. Endophytic Fungi Accelerate Leaf Physiological Activity and Resveratrol Accumulation in Polygonum cuspidatum by Up-Regulating Expression of Associated Genes. Agronomy 2022, 12, 1220. https://doi.org/10.3390/
agronomy12051220
[51] Liu, X.-Q.; Xie, Y.-C.; Li, Y.; Zheng, L.; Srivastava, A.K.; Hashem, A.; Abd_Allah, E.F.; Harsonowati, W.; Wu, Q.-S*. Biostimulatory Response of Easily Extractable Glomalin-Related Soil Protein on Soil Fertility Mediated Changes in Fruit Quality of Citrus. Agriculture 2022, 12, 1076. https://doi.org/10.3390/agriculture12081076
[52] Liang SM, Zheng FL, Wu QS*. 2022. Elucidating the dialogue between arbuscular mycorrhizal fungi and polyamines in plants. World Journal of Microbiology and Biotechnology, 38:159. Doi: 10.1007/s11274-022-03336-y
[53] Cao MA, Zhang F, Abd_Allah EF, Wu QS*. Mycorrhiza improves cold tolerance of Satsuma orange by inducing antioxidant enzyme gene expression. BIOCELL, 2022, 46(8), 1959–1966 Doi: 10.32604/biocell.2022.020391
Editor of SCI journals: BMC Plant Biology; Horticulturae; Notulae Botanicae Horti Agrobotanici Cluj-Napoca; Biocell; Agriculture; Phyton-International Journal of Experimental Botany
Associate Editor of a Sci Journal: Chemical and Biological Technologies in Agriculture
Review editor of Frontiers in Plant Science
Editor of Academia Biology
国家发明专利:一种观测丛枝菌根根外菌丝对水分吸收的方法. 吴强盛、邹英宁、黄咏明、倪秋丹. 专利号:ZL 2013 10667080.1,授权时间:2016年6月8日
国家发明专利:吴强盛,邹英宁,王双,池格格,刘春艳. 一种外源易提取球囊霉素土壤改良剂的制备方法及其使用方法. ZL201610504885.8,时间 2019-10-15
国家发明专利:吴强盛,邹英宁,谢苗苗,刘春艳,张艺灿. 一种促进风信子提前开花并延长花期的方法. 专利号:ZL 201611138583.X,授权时间:2020年7月31日
吴强盛,何家栋,邹英宁,刘春艳,张菲,谢苗苗. 一种土壤性状的对比检测方法. ZL 201810795951.0,授权时间2020-11-06
吴强盛,何家栋,邹英宁,刘春艳,张德健,张菲. 一种调节柑橘脂肪酸不饱和度的抗旱菌剂制备及应用方法. ZL 201811391639.1,授权时间:2021-04-27
封海东,郭锐,周明,肖飞,张斌、张泽志,金善忠,李坤,司海倩,郭元平,秦光明,袁修华,周军,欧阳友香,刘贤荣,吴强盛. 2019年十堰市市级规程,虎杖种子育苗技术规程,DB4203/T 142-2019
虎杖栽培技术规程DB4203/T 187-2020,2020/9/10,第二
封海东、郭锐、穆森、周华平、周明、鲍江峰、刘大会、宗庆波、马毅平、葛一洪、吴强盛、张泽志、刘义梅、李坤、唐涛、张斌、段媛媛、王帆帆、石锐、韩明清. 中药材虎杖种子育苗技术规程. DB42/T 1719—2021. 湖北省地方标准
【1】 吴强盛,刘乐承,邹英宁,饶贵珍,张义,王贵元. 园艺专业“三明治”教育培养模式的研究与实践. 湖北省高等学校教学成果奖二等奖. 编号:8296,2018-2-2
【2】 许锋,肖波,王文凯,张威威,李俊凯,高梦祥,杨烨,吴强盛. “三链融合、学研一体”卓越农林人才培养模式的研究与实践. 湖北省高等学校教学成果奖二等奖. 编号:2023291,2023-2-21
【3】 徐永杰,周晔,王滑,黄发新,孙亮,顿春垚,王其竹,李强,吴强盛,徐春永. 巴山核桃种质创新及产业化关键技术研发. 湖北省科技进步奖贰等奖. 排名第9, 2023年2月,2022J-208-2-079-009-R09
【4】 何跃军、吴强盛、钟章成、欧 静、刘锦春. 喀斯特植物适应性的菌根调控机理及菌根化育苗技术. 贵州省科学技术进步奖三等奖(排名第2) 2017J-3-46-2, 时间:2017-12-23
【5】 朱先灿、吴强盛、邹英宁、刘胜群、田春杰、宋凤斌、刘智蕾、徐洪文.丛枝菌根提高植物抗逆性的生理机制.吉林省自然科学奖二等奖. 2019Z20026. 吉林省科学技术奖励委员会. 2019-10-23
主持的主要科研项目(第一主持人)
编号 |
来源 |
名称 |
32272643 |
国家自然科学基金 |
菌根菌丝源球囊霉素通过生长素代谢差异化调控枳生长机制 |
KFT202005 |
湿地生态与农业利用教育部工程研究中心2020年开放基金 |
AM真菌增强毛桃耐涝性的多胺调控机制解析 |
BXLBX0317 |
湖北省百校联百县—高校服务乡村振兴科技支撑行动计划 |
菌根菌肥在油茶上的应用研究与示范
|
BXLBX0324 |
湖北省百校联百县—高校服务乡村振兴科技支撑行动计划 |
柑橘菌根菌肥的田间应用及示范 |
202019 |
2020年度中国-中东欧国家高校联合教育项目(中国教育国际交流协会) |
球囊霉素调控生长素影响枳生长的机制解析 |
SKLTOF20190105 |
茶树生物学与资源利用国家重点实验室开放基金项目 |
AM真菌促进茶树P吸收的机制研究 |
2018YFD1000300 |
国家重点研发计划 |
菌根调控柑橘抗旱性的生理和分子机制 |
鄂农发【2018】1号 |
湖北省农业科技创新行动项目 |
柑橘菌根菌肥应用技术研究 柑橘岗位科学家(特色水果生态高效栽培与采后处理) |
2018ZYYD045 |
中央引导地方科技发展专项资金项目 |
鄂西北核桃良种应用及丰产栽培技术推广与示范 |
鄂农计发【2018】34号 |
湖北省农业厅重大技术 |
园艺作物“三增三减”健康栽培与加工 |
SKLTOF20160112 |
茶树生物学与资源利用国家重点实验室开放基金项目 |
菌根真菌调控茶树生长和根系发育的机制研究 |
T201604 |
湖北省高等学校优秀中青年科技创新团队计划项目 |
柑橘菌根生理和相关功能研究 |
31372017 |
国家自然科学基金 |
柑橘菌根根外菌丝释放球囊霉素相关土壤蛋白的特性及其相关功能研究 |
30800747 |
国家自然科学基金 |
柑橘丛枝菌根共生体与多胺的交互作用研究 |
211107 |
教育部科学技术研究重点项目 |
柑橘菌根释放球囊霉素的特点及其在碳代谢中的作用 |
2012FFA001 |
湖北省自然科学基金杰出青年人才基金 |
柑橘根际球囊霉素的相关功能研究 |
余海洋
谭作枰
周立军
文玥
郑凤玲
梁圣敏
刘珍
徐馥淇
邓慈
李秋爽
雷安淇
刘小青
王禹
荣子怡
孙睿婷
曹明奡
梁圣敏
王玉娟
马文雅
曹金丽
孟璐璐
程申
谢苗苗
程慧倩
丁玉娥
杨柳
邮编:
通讯/办公地址:
邮箱: